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Abstract

We build a quantitative theory of income growth, the increase in life expectancy in the

last two centuries, and the emergence and expansion of a modern health sector in the 20th

century. To do so, we develop a two-sector overlapping generations model with endoge-

nous and directed technical change in which income growth, life expectancy, technological

progress in the health and the final goods sector, as well as the size of the health sector

and the quality and price of the goods it produces are jointly determined in general equi-

librium. The model interprets the facts as three phases of a dynamic equilibrium in which

households are initially poor and the quality-adjusted price of health goods is prohibitively

high so that demand for health goods is zero, life is short and life expectancy stagnant. As

income grows, fueled by technological progress, households start consuming basic health

goods, life expectancy starts to rise, and directed technological progress eventually, with a

delay of ca. 100 years, leads to the emergence and expansion of a modern health sector.
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1 Introduction

In 1820 the remaining life expectancy1 of a twenty year old person living in the United States was

approximately 40 years, per capita income was $2, 674 (in constant 2011 US dollars, according

to the Maddison data base) and virtually none of that income was spent on health goods and

services, abstracting from expenditures on basic food and hygiene. In 2019, the year prior to

the COVID-19 pandemic, remaining life expectancy at age twenty stood above 60 years, income

per capita rose to 55,355 (again in constant 2011 US dollars), and close to 20% of that income

was spent on goods produced by a modern, high-tech health sector. In this paper we build

a quantitative theory to explain these observations, and use the theory to investigate what role

government health (care) policies have played in this transition from a life that was poor and short

and without much medical care to one with high incomes, long lives and high-tech, expensive

health care.

To do so we develop a two-sector overlapping generations model with endogenous and directed

technical change in which income growth, life expectancy, technological progress in the health

and the final goods sector, as well as the size of the health sector and the quality and price of

the goods it produces are jointly determined in general equilibrium. The model interprets the

facts as three phases of a dynamic equilibrium in which households are initially poor and the price

of health goods is prohibitively high so that demand for health goods is zero, life is short and

life expectancy stagnant. As income grows, fueled by technological progress, households start

consuming basic health goods, life expectancy starts to rise, and directed technological progress

eventually, with a delay of ca. 100 years, leads to the emergence and expansion of a modern

health sector that commands a significant and growing share of labor demand, production and

household expenditures.

We calibrate the model parameters (which includes the initial conditions for the state of

technology in both sectors) to observations on income per capita and life expectancy in 1820

as well as to the timing of increase in life expectancy and the emergence of the modern health

sector, and then use the model as a quantitative laboratory to answer two applied questions.

After having verified that the model accounts well for the time series in per capita income, life

expectancy and the relative price for health goods, we ask what share of the increase in life

expectancy from 1940 onward can be attributed to the modern health sector. We find that share

to be approximately 30%, suggesting that the increased expenditures on basic health goods (e.g.,

better food and hygiene) played a major role in the expansion of life expectancy even in the 20th

century, and even in the presence of a modern health sector that approaches an expenditure share

of 20% of total GDP.

1Unless otherwise noted, we use cohort life expectancy as the relevant measure of life expectancy.
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Second, we use the fact that the model accounts well for the increase in the relative price of

health goods and services between 1940 and 2020 to decompose its increase into two components:

a term driven by the income-growth-induced rising household demand for health goods relative

to final goods; and a term due to productivity growth in the modern health sector relative to the

final goods sector, driven by endogenous technological progress. We show that between 1940

and 1980, both components contribute roughly half of the overall increase in the relative health

price, but after 1980, technological progress in the modern health sector accelerates and becomes

the dominant force.

Related Literature. Our model has three key building blocks, a two-period overlapping gen-

erations structure with production akin to Diamond (1965), endogenous investments into health

and longevity by private households, as in Grossman (1972) and the endogenous evolution of tech-

nological change in the Schumpeterian growth tradition (see, e.g., Aghion and Howitt (1992) or

Aghion and Howitt (1998) whose speed differs across sectors in the economy, akin to Acemoglu

and Guerrieri (2008). It seeks to describe the path of economic and health stagnation, take-off

during a transition period and, eventually, balanced growth as one dynamic equilibrium, as in

the general literature on unified growth theory (see, e.g., Galor (2011) or Hansen and Prescott

(2002)).

In trying to explain long run trends in life expectancy and connect it to technological progress

our paper builds on the work by Cervellati and Sunde (2005) who develop a model of the take-off of

life expectancy by modeling the feedback loop between income growth, human capital formation,

increases in life-expectancy and the size of the population. In contrast to them, we seek to

provide a unified theory not only of the take-off in life expectancy in the 19th century, but also

the emergence of the modern health sector. That purpose is shared with Hejkal, Ravikumar, and

Vandenbroucke (2022) but their focus is on explaining cross-country differences (and similarities)

in the reduction of mortality as well as the evolution of the world population.

More broadly, in terms of model-building this paper contributes to the literature on health

spending, R&D in the health sector and endogenous growth. Borger, Rutherford, and Won (2008)

develop a model with endogenous technology adaptation in the health sector to predict future

health spending shares and conclude that health spending will slow down. Ehrlich and Yin (2013)

construct an endogenous growth model where human capital is the engine of growth. Both these

elements are encompassed in the work of Kuhn and Prettner (2016) who model a final goods

sector with an intermediate R&D sector and a labor-intensive health sector. They argue that

an expansion of this sector may reduce growth by shifting resources away from R&D spending.

Like us, Frankovic and Kuhn (2023) develop an overlapping generations model with endogenous

health and two production sectors to evaluate the quantitative impact of the introduction of

health insurance through Medicare and Medicaid on health spending trends, macroeconomic
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performance, and trends in life expectancy since 1960 when Medicaid was introduced. In their

model, the growth rate of the final goods sector is exogenous and endogenous in the health sector

(as in the work by Böhm et al. (2018) who model the evolution of individual health through

an accumulation of health deficits). In contrast, we model endogenous growth symmetrically in

both sectors, but permit it to be unbalanced.2

Finally, a vibrant positive literature studies potential reasons behind the increase in the health

expenditure share in U.S. postwar data and a normative literature explores what share of economic

activity should be dedicated to health goods and services. The normative perspective includes

the work by Hall and Jones (2007), Jones (2004) and Jones (2016). Hall and Jones (2007) model

health spending as a superior good with an income elasticity larger than one. As a consequence,

income growth leads to an expansion of the health expenditure share, as in our paper. We extend

this framework to a two-sector model with a symmetric treatment of endogenous growth in both

sectors, and where unbalanced growth emerges as an equilibrium outcome. In contrast to their

paper our main purpose is positive, seeking to understand the expansion of the modern medical

sector. Jones (2004) develops an endogenous growth model with R&D to explain the increasing

health expenditure share. Our model shares the same broad narrative, but provides an explicit

treatment of production in a two-sector model so that income growth spurs quality improvements

and thus technological progress in both sectors. Jones (2016) also considers growth in two sectors

by studying the optimal rate of consumption growth relative to growth of life-saving technologies.

On the positive side, Anderson, Reinhardt, and Hussey (2003) argue that the increase of the

health spending share is primarily due to the relative price increase of medical goods,3 which

could either be due to an increase in market power of the supply side relative to the demand side

in the market for health goods, as Anderson et al. (2003) suggest,4 or perhaps due to imperfectly

measured quality improvements as our model implies.5 The quality improvements in turn are the

result of costly technological progress. The Congressional Budget Office (2008) presents a review

2An important mechanism in these models is typically a market size effect which triggers innovation spending.
Empirical support for this mechanism in the health sector is provided by Acemoglu and Linn (2004).

3Fonseca, Langot, Michaud, and Sopraseuth (2023) estimate US health prices to be 33% higher than those of
European countries, which explains 60% of differences in health expenditures.

4As suggested by Retzlaff-Roberts, Chang, and Rubin (2004), the U.S. health care system is plagued by larger
inefficiencies than the systems in other industrialized countries. This is a central theme in a growing literature
attributing increases in health spending in the US and cross-country differences across the OECD to health prices
and inefficiencies in health care markets, see, e.g. Cooper, Craig, Gaynor, and Reenen (2019), Horenstein and
Santos (2019), and Feldman and Pretnar (2023). Our monopolistically competitive pricing structure in the health
sector may reflect such inefficiencies. Higher prices, and the associated higher average asset returns could also be
a reflection of compensation for medical innovation risk, see e.g., Koijen, Philipson, and Uhlig (2016).

5In this regard, our paper relates to the literature on a lack of quality adjustments of health goods, e.g.,
Graboyes (1994), Lawver (2011) and Berndt, Cutler, Frank, Griliches, Newhouse, and Triplett (2000), who find
that health price indices profoundly underestimate the quality improvements documented in, e.g., Cutler and
McClellan (2001).
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of the literature arguing that technological progress contributes to 40-60 percent of the growth

in real per capita health care spending, with demographic change towards an older population

being another important contributor. Zhao (2014) argues that an introduction and expansion of

social security added to increase of health expenditures. See also Fonseca, Michaud, Galama,

and Kapteyn (2021) in this regard.6

The remainder of this paper proceeds as follows. Section 2 presents stylized facts on life-

expectancy, aggregate health spending and prices of health goods used to motivate, calibrate and

evaluate the model. Section 3 lays out the model and defines equilibrium. Section 4 contains

a theoretical characterization of parts of the equilibrium and Section 5 presents the calibration

of the model. Section 6 contains the quantitative evaluation of the model, both along dimen-

sions targeted in the calibration and validates the model along dimensions not targeted in the

calibration. Section 7 concludes the paper. Details of the construction of the empirical facts,

the computational procedure, the calibration of the model as well as on technical-theoretical

derivations are contained in Appendices A, and B, respectively.

2 Stylized Facts

In this section we document the main facts that motivate our model, starting with the timing of

the increase in life expectancy in Subsection 2.1, then briefly reviewing the time path of income

per capita, starting from the industrial revolution in Subsection 2.2, and finally documenting the

emergence and evolution of the Modern Health Sector in Subsection 2.3.

2.1 Life Expectancy

When documenting life expectancy for the last two centuries we face two crucial choices. First,

in the early period a significant increase of life expectancy is due to a decline in child mortality,

with later improvements mainly accruing to increased life expectancy conditional on survival to

adulthood. Since our model focuses on the the second part, the improved longevity of adults,

so will our discussion of the data. Second, life expectancy at a given point in time can be

measured using purely cross-sectional survival rates or employ cohort survival rates. The first,

cross-sectional concept only requires age-specific survival rates at a given point, but assumes that

a current 20 year old adult will have the same survival rate at age 50 (that is, 30 years into the

future) as a current 50 year old individual, thereby ignoring potential technological improvements

in the health sector. Cohort life expectancy is more data-demanding since it requires future age-

specific survival rates of the cohort under consideration. Since it fully captures the impact of

6A parallel literature studies the sources of level differences in health spending shares across countries and
attributes the higher share in the U.S. to the fact that the U.S. is the leading country for the invention of new
costly health products, see Chandra and Skinner (2012).
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medical innovations, a key aspect of our model, we prefer this concept for the purpose of this

paper. In conclusion, although we present various time series of life expectancy here, our main

focus in the quantitative analysis will be on remaining cohort life expectancy at age 20.

Figure 1 shows in panel (a) life expectancy at birth according to the cross-sectional concept.7

Moving from there to panel (b) of the figure we take three transformations of the data. First,

we apply a Hodrick-Prescott filter on the age and time specific mortality rates to extract the

age-specific trend components, second, we compute cohort life expectancy instead of cross-

sectional life-expectancy and, third, we look at remaining (cohort) life expectancy at age 20 of

a person in a given year. From this picture we make the following observations. First, before

about 1840, remaining cohort life-expectancy in the US was basically flat and the average—

taken for the years 1790 to 1840—was about 39.83 years. Second, since then life expectancy

has been increasing so that now—i.e., in year 2020—remaining cohort life expectancy at age 20

stands at 66.22 years. Third, due to death related to pregnancy and child birth, the remaining

cohort life expectancy of women was lower than that of men until 1864, when the familiar

positive life expectancy gap between female and male life expectancy starts to emerge.8 In

panels (c) and (d) we focus on average life expectancy in the population—averaged across men

and women—and we zoom in on the subperiods before and after 1900 and add bootstrapped

confidence intervals. Acknowledging the uncertainty about the very precise timing of the take-off

in adult life expectancy—which we illustrate here by displaying the bootstrapped 95% confidence

intervals of the cohort life expectancy—, based on panel (c) we date this take-off at 1840 for the

remainder of this paper. Panel (d) indicates diminishing gains to cohort life expectancy at age 20

in the past decades. In contrast to these diminishing gains, the path of cohort life expectancy

at age 60—which we display in panel (e)—indicates increasing gains. This visualizes that in the

past century, gains in life expectancy increasingly took place at older ages, which points to the

importance of a modern health sector for shaping life expectancy.

2.2 Income per Capita over the Last Two Centuries

Our theory ascribes crucial importance to the increase in income per capita in generating the

takeoff, first in life expectancy and then in the emergence of a modern health sector, driven by

rising demand for health goods from the household sector.9 We therefore briefly review the main

7A detailed description of data sources and our methods used to calculate life expectancy—according to both
concepts—is contained in Appendix A.

8On the contrary, the gap in remaining cohort life expectancy at age 40 between women and men is positive
for all years.

9It is important to stress, though, that in our model income growth is not exogenously assumed, but emerges
endogenously as part of the dynamic equilibrium transition path from an initial period of stagnation towards a
balanced growth path with constant, positive growth rates of incomes and production in both sectors and constant
expenditure shares.
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Figure 1: Life-Expectancy in the US

1750 1800 1850 1900 1950 2000 2050

30

40

50

60

70

80

90

(a) Cross-Sectional Life Expectancy at Birth

1750 1800 1850 1900 1950 2000 2050

35

40

45

50

55

60

65

70

(b) Remaining Cohort Life Expectancy at Age 20

1780 1800 1820 1840 1860 1880 1900

39

40

41

42

43

44

45

46

(c) Remaining Cohort Life Expectancy at Age 20:
until 1900

1900 1920 1940 1960 1980 2000 2020

45

50

55

60

65

70

(d) Remaining Cohort Life Expectancy at Age 20:
after 1900

1900 1920 1940 1960 1980 2000 2020

14

16

18

20

22

24

26

(e) Remaining Cohort Life Expectancy at Age 60:
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Notes: Cross-sectional life-expectancy in panel (a), cohort life expectancy in panels (b)–(e). 95% Bootstrapped
confidence intervals are shown as dashed lines in panels (c)–(e). Sources: Hacker (2010), Human Life-Table
Database, Human Mortality Database, own computations, see Appendix A for details.
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facts concerning income per capita (growth) in the U.S. over the long run (that is, abstracting

from short-run business cycles).

Figure 2: Income per Capita in the U.S., 1800-2018
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Source: Maddison Project Data Base 2020.

Accordingly, Figure 2, which plots the natural logarithm of real income per capita for the

U.S. for the last two centuries, as documented in the Maddison Project Data Base, displays the

well-documented fact that income per capita started to rise significantly around 1820 and since

then has grown at a roughly constant (in fact slightly accelerating) pace of approximately 2%

per year.

2.3 The Emergence and Evolution of the Modern Health Sector

The third set of facts that motivate our analysis is the emergence and growth of a modern health

sector in the 20th century. Parker (2019) dates the start of the era of modern medicine at ca.

1920 in his book, pointing to landmark breakthroughs such as the discovery of Penicillin in 1928

and the start of its mass production towards the end if WWII, the discovery and analysis of blood

types and blood transfusions and the associated understanding of the causes of diabetes mellitus,

as well as the emergence of cancer research and cures.

In Figure 3 we plot shares of various measures of output, investment and employment devoted

to the health sector.10 The range of the time series is dictated by data availability, but all measures

point to the same broad observation: the share of economic activity contributed by the health

sector was close to zero prior to World War II and since then has steadily been increasing over

time, to more than 10% of total output (panel (a) and employment (panel (b)) and close to 20%

10Since we display shares, there is no need to deflate the measures by prices
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Figure 3: Health Shares (Spending, Employment, Investment, R&D) in the U.S
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Sources: Panel (a): The government spending share (blue dashed line) is taken from www.

usgovernmentspending.com. The total health expenditure share (black solid line) is taken from the National
Health Expenditures data of the Centers for Medicare & Medicaid Services (CMS). The output share (red dashed
line) are household expenditures on health care taken from the Bureau of Economic Analysis (BEA), Table 1.5.5.
All series are nominal and related to nominal GDP taken from the BEA data. Panel (b): The employment share
is computed as full-time equivalent employees in the health sector relative to the total number of US full-time
equivalent employees using data from the BEA, Tables 6.4 and 6.5. Panel (c): The investment share is computed
as real investments in the health sector relative to total real investments in the US, with data taken from BEA,
Tables 3.7 and 3.8. Panel (d): The real R&D expenditure share data are likewise defined as the ratio of real R&D
expenditures in the health sector relative to total real R&D expenditures and compiled from various sources, the
CMS, the National Science Foundation (NFS), and the OECD Stan R&D expenditure data.

of overall household spending and R&D investment. It is this emergence and continued expansion

of the modern health sector we seek to explain as the endogenous equilibrium outcome driven

by income growth on the demand side, and endogenous (temporally) unbalanced technological

progress on the supply side of the model.
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Figure 4: The Relative Price of Health Goods in the U.S.
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Sources: The relative price of health is computed as the ratio of the price indices of household expenditures on
health services to the GDP price index taken from BEA, Table 1.6.4.

Finally, in Figure 4 we plot the relative price of health goods, measured as the ratio of the

price index of household expenditures on health services to the GDP price deflator. Health goods

have become more expensive over time; it is an open question what share (potentially larger than

100%) of this increase can be attributed to improvement in the quality of modern health care.

Our model will permit the interpretation of this observation since it will deliver a time series for

the price of one unit of health care, and a series for the price of one unit of quality-adjusted

health goods.

In the remainder of the paper we now construct a two-sector overlapping generations model

with endogenous and directed technical change in which income growth, life expectancy, techno-

logical progress in the health and the final goods sector, as well as the size of the health sector

and the quality and price of the goods it produces are jointly determined in general equilibrium.

3 The Model

We model a small open economy with overlapping generations, where in every period t a unit

measure of identical young individuals is born. The number of old individuals is denoted by not and

is endogenous in the model, as described below. The total population is denoted by nt = 1+not .

Households work, earn income, spend resources on health and save in the first and consume in

the second period of their lives. The other actors in the economy are firms in three sectors of the

economy, final goods firms in the consumption good sector and the health sector that operate

under perfect competition, and R&D sector firms that seek to invent intermediate goods of higher

quality, and if successful, become the monopolistically competitive suppliers of intermediate goods
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of a certain variety that they sell to the final goods producers at a markup sufficient to recover the

R&D costs needed to generate the new inventions. We now describe the household sector and

then the several production sectors of the economy, before defining a competitive equilibrium.

3.1 Households

Households derive utility from consumption in young age cyt ,, and old age cot+1. They survive from

the first to the second period of their life with probability ψ that depends on their investment it

into health goods when young. The utility of being dead is set to zero, and therefore expected

lifetime utility is given by11

(1− β)u(cyt ) + βψ (it)u(c
o
t+1) (1)

where the period utility function u(c) is at least twice continuously differentiable with u′(c) > 0

and u′′(c) < 0, and satisfies the lower Inada condition, thus limc→0 u
′(c) = ∞. The survival

function ψ(i) is increasing in health investment i, that is, ψ′(i) > 0. We further assume

that limi→∞ ψ(i) = 1 and 0 < ψ(0) < 1 and ψ′(0) < ∞ that is, households survive with

positive probability into the second period even absent any health investment, and the marginal

benefit of health investment is finite at i = 0.

Health investment it is the composite of two health goods, health good purchases ift from

the final goods sector (standing in for expenditures on basic hygiene and nutritious food) and

purchases iht of goods from a separate health production sector (such as modern hospital services

and treatments as well as drugs). Thus,

it = f(ift, iht) (2)

Young households supply labor to both sectors of the economy, with lft denoting labor supply

to the final goods sector and lht denoting the corresponding supply to the health sector. To model,

in a reduced form, the frictions associated with butchers (workers in the consumption sector)

becoming surgeons (workers in the health sector) we assume the following effective constraint on

the labor supplied by the unit mass of households of the form:

1 = g(lft, lht). (3)

11Since households survive the first period of life for sure, and since we assume that they only value consumption
in the second period, the level of utility from being alive in the first period is immaterial.
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A constraint of the form of (3) is sometimes used in multi-sector models to model, in a simple

manner, imperfect labor mobility across sectors.12 It also implies that wages can potentially differ

across the two sectors.

We choose the final consumption good as the numeraire and denote by pt the price of goods

produced by the modern health sector, and by wjt, j ∈ {f, h} wages in the two sectors of

production. We envision the representative young household being composed of a large number

of members of size 1, so that total labor income of the household is given by wftlft + whtlht.

Furthermore, households receive transfers Tt implied by accidental bequests from the share of

the older generation 1 − ψ (it−1) that do not survive until old age. Young households take

these transfers as exogenous. The maximization of the utility function (1) is then subject to the

constraints:

cyt + ift + ptiht + st = wftlft + whtlht + Tt (4a)

it = f(ift, iht) (4b)

1 = g(lft, lht) (4c)

cot+1 = Rst. (4d)

We assume that the depreciation rate on capital is 1, so that the gross return on saving st

is given by the world interest factor R = 1 + r which we assume to be exogenous and constant.

Since optimal saving is always strictly positive, potential borrowing constraints never bind and

the period budget constraints can be consolidated to the lifetime budget constraint

cyt + ift + ptiht +
cot+1

R
= wftlft + whtlht + Tt ≡ xt. (5)

where xt is cash-on-hand of the household. In equilibrium, transfers to generation born in period

t due to accidental bequests from generation t− 1 are given by:

Tt = Rst−1(1− ψ(it−1)). (6)

Thus transfers are positive if and only if ψ (i) < 1 and households die with positive probability

between young and old ages.

12E.g., Giagheddu and Papetti (2019) calibrate function g(.) referencing evidence by Cardi and Restout (2015).
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3.2 Firms, Production and R&D

3.2.1 Final Goods Producers

Let j ∈ {f, h} stand for the final and the health sector of the economy, respectively, and pjt for

the price of the output of each of the two sectors. We normalize pft to 1 and simply let pt = pht

denote the relative price of health goods whenever it notationally is more convenient and there

is no room for confusion. In each sector a representative firm uses a continuum of intermediate

inputs indexed by i and labor to produce sectorial output yjt according to the production function

yjt =

(∫ 1

0

q
1−αj

jit y
αj

jitdi

)
l
1−αj

jt , (7)

where 0 < αj < 1 and yjit is the quantity of intermediate input i used to produce the output

good in sector j at date t and ljt is the number of workers employed in sector j. The entity qjit

denotes the quality of intermediate input i at date t in sector j. Growth in this model results from

innovations that increase the quality qjit of intermediate inputs. Since the final good producer

is competitive and takes factor input prices as given, she hires labor and intermediate inputs to

equate marginal productivities to these input prices, taking as given their qualities qjit. Let the

wage rate in sector j be given by wjt and the price of one unit of intermediate good i in sector j

is pjit. The first order conditions are

pjt (1− αj)

(∫ 1

0

q
1−αj

jit y
αj

jitdi

)
l
−αj

jt = wjt (8)

for labor demand and

pjtαjq
1−αj

jit y
αj−1
jit l

1−αj

jt = pjit (9)

for the demand for intermediate goods, given their quality qjit.

3.2.2 Intermediate Goods Producers

Each intermediate good producer i is a monopolist that takes the demand function (9) as given

and uses capital (which depreciates immediately after use) to produce the intermediate good

according to:

yjit = kjit. (10)
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The gross rental rate of capital is given by R, so that each intermediate goods monopolist

producer maximizes profits, taking as given the demand function of the final goods producer,

πjit = max
yjit

{[
pjtαjq

1−αj

jit y
αj−1
jit l

1−αj

jt

]
yjit −Ryjit

}
,

with first order condition

yjit =

(
pjtα

2
j

R

) 1
1−αj

qjitljt (11)

and profits

πjit =
1− αj
αj

Ryjit > 0. (12)

The monopolistic price follows from using (11) in (9) as

pjit =
1

αj
R > R, (13)

hence featuring the standard markup over marginal costs, R. It is the same across all intermediate

input producers i.

Finally, observe from (11) that
yjit
qjit

is constant across varieties i. Likewise the ratio of profits

to quality
πjit
qjit

is constant across varieties i, which we state for further reference using (11) in (12)

as

πjit
qjit

=
1− αj
αj

(
pjtα

2
j

Rαj

) 1
1−αj

ljt. (14)

3.2.3 Aggregation of Production Sector

Because the ratios of variety-specific intermediate outputs to quality yjit/qjit and profits to output

(or quality) πjit/yjit (πjit/qjit) are constant across varieties i we get immediate aggregation results

for each sector.

For each production sector j we can determine aggregate capital input and production as

kjt =

∫ 1

0

kjitdi =

∫ 1

0

yjitdi =

(
pjtα

2
j

R

) 1
1−αj

qjtljt (15)
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where

qjt =

∫ 1

0

qjitdi (16)

is an aggregate quality index of intermediate inputs in sector j. Furthermore, exploiting (11) and

(15) in (7) yields as aggregate production function for sector j

yjt = k
αj

jt (qjtljt)
1−αj . (17)

Using equations (8) and (15) delivers as factor prices for labor inputs and capital inputs:

wjt = (1− αj)
pjtyjt
ljt

(18a)

R = α2
j

pjtyjt
kjt

. (18b)

Finally we can use (12) and (15) to determine aggregate profits in each sector j as

πjt = αj (1− αj) pjtyjt (19)

and thus in each sector j output exhausts factor input payments plus profits:

pjtyjt = πjt +Rkjt + wjtljt (20)

To summarize the aggregation result, in each of the two sectors output is produced with a

Cobb-Douglas production function with capital and labor inputs in which the level of technology is

given by qjt. However, final goods producers cannot rent capital directly, but have to go through

monopolistically competitive intermediaries. As a consequence owners of the capital (which will

be the old households in equilibrium) command only a fraction α2 of the value of output, with a

fraction α(1− α) accruing to the monopolist intermediaries.

3.2.4 Research and Development

An R&D developer that specializes in intermediate good i spends resources of the final con-

sumption good zjit on R&D to achieve innovation. If successful in innovation, the quality of the

intermediate good increases from qjit−1 to

qjit = λjqjit−1 (21)
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where λj > 1 is a parameter. The successful innovator immediately becomes the monopolist, and

for one period enjoys monopoly profits πjit associated with technology level qjit = λjqjit−1. In a

product line i in which innovation is not successful a randomly chosen entrepreneur becomes the

monopolist and produces at quality qjit = qjit−1 with associated profits.

We assume that the probability of innovating is related to the quality reached when successfully

innovating given by λqjit−1 as well as the size of the corresponding final production sector given

by the employment share ljt so that

ϕj(zjit; ljt, qjit−1) = min

[
φj

(
zjit

λjqjit−1

)γj
· l−1
jt , 1

]
, (22)

with γj ∈ (0, 1) and φj > 0. First, an increase in the scale of the final production sector measured

as the employment share ljt dilutes the effects of research outlays, zjit. Conditional on having a

new product, successful innovation requires supplying the intermediate good to the respective final

production sector. The negative dependence on ljt captures that a larger final production sector

benefits the incumbent monopolist (e.g. due to existing supply chain networks, contracts and

relationships with hospitals/doctors, etc.), thus lowering the probability of successful innovation.

Second, the inverse relationship between the success probability and current quality qjit−1 reflects

the fact that it becomes increasingly harder to innovate if already a level of quality is reached

for variety i. Note that the probability of innovating is bounded between 0 and 1. As a result,

there is an upper bound on R&D spending, zjit, which achieves an innovation probability of 1 and

beyond which additional spending is unproductive. The upper bound is more likely to become

binding in the early stages of a final production sector in which ljt is small.

The R&D entrepreneur then spends resources zjit and, if successful, collects profits πjit.

Hence the problem is

max
zjit

{πjitϕj (zjit; ljt, qjit−1)− zjit} (23)

For interior solutions the first order condition is

πjit
λjqjit−1ljt

φjγj

(
zjit

λjqjit−1

)γj−1

= 1, (24)

which yields as solution a ratio of R&D spending to potential period t technology
zjit

λjqjit−1

zjit
λjqjit−1

=

[
φjγj

πjit
λjqjit−1ljt

] 1
1−γj

. (25)
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In the interior solution the innovation probability is then

φj

(
zjit

λjqjit−1

)γj
l−1
jt = φj

[
φjγj

πjit
λjqjit−1ljt

] γj
1−γj

l−1
jt . (26)

The condition for the upper bound on the innovation probability to bind is then

1 ≥ φj

[
φjγj

πjit
λjqjit−1ljt

] γj
1−γj

l−1
jt (27)

Noticing that in case of success qjit = λjqjit−1, we can now use the profit equation (14) in

the above to find effective R&D spending in the binding and non-binding case

zjit
λjqjit−1

=


[
ljt
φj

] 1
γj if ϕj (zjit; ljt, qjit−1) = 1[

1−αj

αj
φjγj

(
pjtα

2
j

Rαj

) 1
1−αj

] 1
1−γj

if ϕj (zjit; ljt, qjit−1) ∈ (0, 1).

(28)

Notice that effective R&D spending and the probability of innovation are the same across all

varieties i. Using the above back in (22) we observe that in the interior solution the share of

varieties innovating is (due to the law of large numbers)

µjt =

∫
φj

(
zjit

λjqjit−1

)γj
l−1
jt di = φ

1
1−γj

j

[
γj
1− αj
αj

(
pjtα

2
j

Rαj

) 1
1−αj

] γj
1−γj

l−1
jt (29)

and is therefore independent of the distribution of qualities across varieties i. For future reference,

also observe that resources spend by entrepreneur i are

zjit =

[
1− αj
αj

φjγj

(
pjtα

2
j

Rαj

) 1
1−αj

] 1
1−γj

λjqjit−1 (30)

so that total resources devoted to R&D in sector j are equal to

zjt =

∫
zjitdi =

[
1− αj
αj

φjγj

(
pjtα

2
j

Rαj

) 1
1−αj

] 1
1−γj

λjqjt−1, (31)

which are also independent of the distribution of qualities across varieties in sector j.
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3.3 Definition of Equilibrium

In this section we define a competitive equilibrium for our economy. We immediately proceed to

defining the equilibrium for the aggregate economy, thereby already exploiting the aggregation

results developed in sections 3.2.3 and 3.2.4. Noticing that we can define either good as nu-

meraire, we normalize pft = 1 and define all equilibrium conditions in terms of the price of health

goods pt =
pht
pft

. Recall that we assume a small open economy (SOE) facing the exogenous and

constant interest rate factor R.

Definition 1. Given an initial population, 1, not , and initial conditions s0, qf0, qh0 and given exoge-

nous returnR, a competitive equilibrium is a sequence of household allocations co1, {st, iht, ift, c
y
t , c

o
t+1}∞t=1,

a sequence of capital and labor inputs of goods producers {kjt, ljt}∞t=1, foreign asset hold-

ings {ft}∞t=1, a sequence of R&D expenditures, profits and consumption of R&D developers

{zjt, πjt, cjt}∞t=1, a sequence of aggregate capital and technology {kt, qft, qht}∞t=1, prices {pt, wft, wht}∞t=1

and transfers {Tt}∞t=1 and a law of motion of the old population not such that

1. Household maximization: for each t ≥ 1, given prices and transfers wft, wht, pt, R, Tt, the

allocations iht, ift, st, c
y
t , c

o
t+1 maximize (1) subject to (4).

2. Transfers Tt satisfy equation (6).

3. Factor prices satisfy equations (18a) and (18b).

4. Optimal R&D spending zjt in each sector is given by (31) and consumption of R&D

entrepreneurs is determined as cjt = πjt − zjt.

5. The equilibrium innovation intensity µjt is given by equation (29) and technology in each

sector evolves according to

qjt = (1− µjt)qjt−1 + µjtλqjt−1 (32)

6. Markets clear: for all t ≥ 1

(a) Labor Market

1 = g(lft, lht). (33)

(b) Capital Market∑
j

kjt = kt. (34)
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(c) Final Goods Market

st + cyt + cotn
o
t + ift +

∑
j

[cjt + zjt] = kαft (qftlft)
1−α +Rft. (35)

(d) Health Goods Market

iht = kαht (qhtlht)
1−α . (36)

(e) International Capital Market

ft = st−1 − kt.

(f) The population evolves according to

not = ψ(it−1). (37)

4 Theoretical Characterization of Equilibrium

In this section we characterize the optimal solution to the household problem. Given prices and

transfers, young households choose labor allocation lft, lht, health investment allocation ift, iht

and thus total health investment it and the survival probability ψ (it), and consumption in both

periods of their life cyt , c
o
t+1, where they maximize (1) subject to (4). We think of ift as goods such

as expenditures on hygiene and fresh water that are beneficial for longevity but not measured as

part of health expenditures. We would like to generate the following properties of the household

problem, and will make appropriate functional form assumptions to insure that they are true in

equilibrium.

Proposition 1. Suppose that the sequence of prices and cash at hand {pt, xt} satisfy

xt+1

pt+1

>
xt
pt
. (38)

That is, there is real income growth along the transition. Then there exist threshold time periods

0 < T1 < T2 <∞ such that

1. For all t < T1 we have it = ift = iht = 0 and ψ (it) = ψ (0) and cot+1 = Rxt. We call this

phase 1.
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2. For all t ∈ [T1, T2) we have it = ift > 0 and iht = 0 as well as ψ (it) > ψ (0). Life

expectancy is increasing due to better basic hygiene and food intake, but the modern

health sector remains inoperative. This is phase 2.

3. For all t ≥ T2 we have ift > 0 and iht > 0 as well as ψ (it) > ψ (0). Life expectancy is

further increasing fueled by increasing expenditures in the modern health sector. This is

phase 3.

4. For t→ ∞, the economy converges to a balanced growth path with constant expenditure

shares in cash-on-hand xt. This is the balanced growth path.

4.1 The Division of Labor Across the Two Sectors

Note that the labor allocation problem is straight-forward and separated from the health spending

consumption problem. Thus, we can solve the household model sequentially, first by solving for

the labor allocation that maximizes income and second, taking transfers Tt as given, allocating

cash-on-hand xt optimally to consumption, saving and health investment which boils down to a

two-dimensional maximization problem.

We specify the function g(lft, lht) assuming a constant elasticity of ϵ as

1 = g(lft, lht) =

(∑
j

l
1+ 1

ϵ
jt

) 1

1+1
ϵ

Notice that ϵ = ∞ this implies perfect labor mobility across the two sectors, and ϵ = 0 it implies

no mobility at all.13 For interpretational purposes we think of a by age cohort representative

household who optimally decides to allocate its labor across the two sectors.

In the case of perfect substitution (ϵ = ∞) we have a corner solution whenever wages are

not equalized given by

lit =


1 if wit > wjt

∈ [0, 1] if wit = wjt

0 if wit < wjt

Thus, we get an interior solution in which both sectors are operative ljt ∈ (0, 1), j ∈ {f, h}
iff wht = wft. In the interior solution the labor supply to each sector is not determined.

13Standard estimates of ϵ range between ϵ = 0.6 and ϵ = 1.8 (Giagheddu and Papetti 2019).
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In the general case of imperfect substitution (ϵ < ∞), which we take as the benchmark, we

directly obtain from (3) the transformation function

lht =
(
1− l

1+ 1
ϵ

ft

) 1

1+1
ϵ . (39)

The first-order condition w.r.t lft gives

wht = wft

(
1− l

1+ 1
ϵ

ft

) 1
ϵ

1+1
ϵ l

− 1
ϵ

ft ,

which simplifies to

lht
lft

=

(
wht
wft

)ϵ
(40)

and thus determines the relative labor allocation across the two sectors in dependence of relative

wages.

4.2 Quasi-Linear Health Investment Function and the Division of Health Investment

Health expenditures on final goods ift and in the health production sector iht are aggregated into

effective health investment it according to the quasi-linear specification

it = iht + (ν + ift)
ζ . (41)

for ν > 0, ζ ∈ (0, 1). Health investment then enters the survival function satisfying the CDF of

a type 2 Pareto distribution given by

ψ(it) = 1− (1 + it)
−ξ . (42)

for ξ > 0. Note that ψ(·) is strictly increasing in ξ, and is strictly increasing in it with ψ(ift =

iht = 0) = 1−[1+ν]−ξ > 0 and limit→∞ ψ(it) = 1. In addition to giving positive survival for zero

health investments, the non-homotheticity parameter ν > 0 prevents the lower Inada condition to

hold for final goods investment ift so that limift→0
∂ψ(it)
∂it

∂it
∂ift

<∞ which is a necessary condition

for the existence of phase 1 in which ift = ift = 0. The concavity parameter ζ ∈ (0, 1) in turn

implies that health investment is linear in iht and concave in ift. Thus, we have the standard

quasi-linear property that agents initially—i.e., once they posses sufficient resources and health

spending becomes positive—only buy the good with decreasing marginal benefit ift and then

switch to the linear good iht forever as soon as marginal benefits over marginal costs of the
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two are equalized. This property gives rise to the possibility of the model to generate phase 2,

where ift > 0, iht = 0, and subsequently in time phase 3, where ift, iht > 0.

We first solve for the optimal split between final goods and health goods for a given amount

of health expenditures et. Then we solve for the optimal amount of health expenditures et. See

appendix B.1 for the full derivation. We start by solving

it = it(pt, et) = max
ift,iht

f(ift, iht)

s.t. ptiht + ift = et

ift, iht ≥ 0

f(ift, iht) = iht + (ν + ift)
ζ

Corner Solution with iht = 0, ift = et: Health investment it is given by

it = f(iht, ift) = iht + (ν + ift)
ζ = (ν + et)

ζ .

Interior Solution: In the interior solution the first-order conditions hold with equality, which

yields

ift = λ̃t − ν

iht =
et − (λ̃t − ν)

pt

where λ̃t ≡ (ζpt)
1

1−ζ .

Existence of Phase 2: The corner solution with iht = 0 and ift = et characterized above

(phase 2) exists if and only if

λ̃t ≥ ν

(ζpt)
1

1−ζ ≥ ν

Existence of phase 2 requires the non-homotheticity factor ν to be sufficiently small relative to

health sector price pt and ζ.
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Characterizing the Phases: For a given level of health expenditures et we can fully characterize

the phases now. Assuming λ̃t > ν for existence of phase 2, the phases are then characterized by

Phase =


1, if et = 0

2, if et ∈ (0, λ̃t − ν]

3, if et > λ̃t − ν.

4.3 Level of Health Expenditures

Given the optimal division of health investment we now optimize over the allocation of cash-on-

hand xt into savings st and health expenditures et. That is, the household now solves

max
0≤cyt ,et≤xt

(1− β)u(ct,y) + βψ (it(pt, et))u(R [xt − et − ct,y] .

Define the share of young consumption in cash-on-hand and the share of health expenditures in

old-age spending, respectively, as

ϑt,c =
cyt
xt

∈ [0, 1],

ϑt,e =
et

et + st
=

et
(1− ϑt,c)xt

=
ptiht + ift
(1− ϑt,c)xt

∈ [0, 1].

Then, the maximization problem can be rewritten in terms of those two spending shares

max
0≤ϑt,c,ϑt,e≤1

(1− β)u(ϑt,cxt) + βψ (it(pt, (1− ϑt,c)ϑt,ext))u(Rxt (1− ϑt,c) (1− ϑt,e)).

4.3.1 Balanced Growth Consistent Functional Form Assumptions

To further characterize the optimal level of health investment in the balanced growth path, we

need to make a decision on the functional form of the per period utility function u(·) in addition

to the assumed functional form assumption of the survival rate in equation (42). We choose a

functional form that is consistent with the existence of a balanced growth path by following Hall

and Jones (2007) and others. We accordingly assume that the utility function takes the form

u(c) =
c1−σ

1− σ
+ b,

where σ ≥ 0 and b ≥ 0 are parameters. Parameter b measures the value of life.
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Corner Solution: The corner solution with ϑt,e = 0 corresponds to phase 1 without any health

expenditure. We solve for the cash-on-hand level at which the first kickoff happens, that is, at

which health expenditure become positive. For σ = 2 and ξ = 1, we obtain an analytical solution

which is given by

xkickoff1 =
1

bR

(
1

2

(
1 +

√
1 + 4bRA1

))
≡ 1

bR
∆(b, R,A1) (43)

where

A1 ≡
1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

ζνζ−1

= 0, if ν = 0

> 0, if ν > 0.

Notice that ν > 0 ensures A1 > 0 which in turn ensures ∆(b, R,A1) > 1. Further, xlowerbound =
1
bR

is the lower bound on cash such that there is no suicide. Then the interval

x ∈ [xlowerbound, xkickoff1] (44)

is non-empty for ν > 0 and characterizes the cash-on-hand region for phase 1 without suicide.

Interior Solution during the Transition: The interior solution with positive health expendi-

tures, ϑt,e > 0, corresponds to phases 2 and 3. We cannot solve for the shares analytically in the

interior solution, instead we have a system of two equations from the first-order conditions given

by

(1− β)u′y = βψu′oR(1− ϑt,e)− βψ′ ∂it
∂ϑt,c

uo
x

ψ

ψ′xtR(1− ϑt,c) =
uo
u′o

∂it
∂ϑt,e

Interior Solution on the BGP: In the interior solution of the BGP, where both the final goods

and the health goods sector are active, we can find the optimal health expenditure share by taking

the limit case: x→ ∞. Plugging in the functional forms, the first-order condition for the health

expenditure share becomes

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
xtR(1− ϑ∗

c) =

(
1

1− σ
+ b(cot+1)

σ−1

)
cot+1

∂it
∂ϑt

. (45)
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For a BGP with the properties pt = p∗ is constant, and, as xt converges to infinity, it →
iht → et

pt
= (1−ϑ∗c)ϑ∗ext

p∗
so that it and c

o
t+1 are both constant shares of cash-on-hand xt to exist

we therefore require ξ = σ − 1. Under this parametric restriction, solving for the limit case

where ψ(it) → 1, we can find the health expenditure share on the BGP

ϑ∗
e =

(
1 +

[
(p∗R)1−σ

bξ

] 1
σ

)−1

.

Plugging ϑ∗
e back into the Euler equation yields the BGP share of young consumption in cash-

on-hand

ϑ∗
c =

[
1 +

(
β

1− β
ψ [R(1− ϑ∗

e)]
1−σ
) 1

σ

]−1

.

4.4 Transitional Dynamics

In equilibirum, the health price pt and relative labor allocation lht
lft

adjust to clear the health goods

market and labor market. We analytically derive the demand for labor by final good producers

and the supply of labor by households in terms of the wage ratio. We then combine the two

which yields the labor market clearing condition and characterizes the relationship between the

health price and the quality ratio across the two sectors along the transition.

Labor demand: Combining the first-order condition for labor from final good producers with

the intermediate good producer solution yields for wages in each sector j

wjt = p
1

1−αj

jt (1− αj)

(
α2
j

Rt

) αj
1−αj

qjt

This delivers the following relationship for the wage ratio

wht
wft

= p
1

1−αj

ht

1− αh
1− αf

α
2αh
1−αh
h α

2αf
αf−1

f

qht
qft

≡ p
1

1−αj

ht

qht
qft
C(αf , αh)

where C(αf , αh) ≡ 1−αh

1−αf
α

2αh
1−αh
h α

2αf
αf−1

f .
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Labor supply: The first-order condition for households’ labor supply is given by

wht
wft

=

(
lht
lft

) 1
ϵ

Equilibrium: In equilibrium labor markets have to clear. Setting the demand and supply con-

dition for the wage ratio equal to each other yields the following equilibrium condition:

(
lht
lft

) 1
ϵ

= p
1

1−αj

ht

qht
qft
C(αf , αh). (46)

Note that qualities are determined endogenously in the R&D sector and depend on previous

quality qjt−1 and the price pjt in each sector. Thus, the only period t endogenous variable on the

right hand side is the health price pht.

Let us provide some intuition for the role of the equilibrium relationship (46). It disciplines the

relationship between the health price and the allocation of labor allocation across the two sectors

along the transition and thereby pins down the price of health pt. With perfect labor mobility,

ϵ = ∞, the left hand side is constant and equal to 1 as wages have to be equalized across

sectors for households to optimally supply labor to both sectors. As a result, the left hand side

is not growing along the transition which limits how much the quality ratio qht
qft

can grow. With

imperfect labor mobility, ϵ < ∞, the quality ratio qht
qft

has to grow faster along the transition in

order to generate growth in the wage ratio wht

wft
which is necessary to incentivize labor reallocation

from households.

5 Calibration

In this section we exposit the calibration of the model. We first discuss our choice of initial

conditions, and then the calibration of the remaining parameters.

We interpret each model period as 40 years. We assume that economic life starts at the

age of 20, when adults make the health investment decisions which determine the probability

to survive to the next period. Thus, the first period covers the biological age span 20-60.

The second period is accordingly 60-100. Life-expectancy at biological age 20 in the model is

therefore 20 + (1 + ψ(i)) · 40 years.

In our main experiment, we treat the years prior to 1940 as years prior to the onset of

modern medical times. The data on investments share, employment share and output share in

the health sector suggest that the modern medical time period starts in about 1940, cf. Figures 1

and 3. A number of additional salient facts support this interpretation. First, the widespread

use of penicillin to treat infections started in the second world war and can thus be dated to

about 1943. Second, while it is hard to obtain historical data on health spending shares, the data
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reported on https://www.usgovernmentspending.com/healthcare_spending support the

interpretation of a start of modern medical times in the 1950s.

Also notice that the US medicare system was only introduced in 1965. Again, recall from

Figures 1 and 3 that employment, investment and output shares in health start increasing prior to

that year. This supports our interpretation of the data that growth of the health sector essentially

is the consequence of research and development efforts, which in turn are triggered by economic

developments (the treatment of soldiers in the second world war might be an additional trigger;

our model has nothing to contribute to this observation), rather than interpreting the introduction

of Medicare as the trigger as in Frankovic and Kuhn (2023), who develop their theory on the

basis of a conjecture in Weisbrod (1991).

Given the assumed frequency of our model of 40 year periods, the years we look at immediately

before the opening up of the modern health sector and thereafter are years 1940, 1980 and 2020.

According to this interpretation of the data and the mechanics of our model, prior to 1940 any

increase of life-expectancy through the lens of our model is attributed to health spending on the

final consumption hygiene health good. Regarding the initial stage, we notice form Panel (b) of

Figure 1 that remaining cohort life-expectancy at age 20 in the US was basically flat until cohorts

that are of age 20 in year 1820 and starts to rise between 1820 and 1860. Thus, years 1780

and 1820 are the initial period before the kickoff in health spending where society is poor. Already

in 1860 spending on the hygiene health good leads to increasing life-expectancy. Accordingly,

years 1860 and 1900 correspond to stage 2. Table 1 summarizes the stages and the corresponding

years.

Table 1: Stages and Calendar Years

1780 1820 1860 1900 1940 1980 2020 . . .
Stage 1 Stage 2 Stage 3

Notes: Stage 1 is the initial stage where the economy is poor and ift = iht = 0. In stage 2 all investment in

health takes place through spending on the hygiene health good, ift > 0, iht = 0. In stage 3 the modern health

sector is also operative so that ift > 0, iht > 0.

We calibrate a subset of parameters exogenously either by reference to other studies or by sim-

ply fixing their values (first-stage parameters). Others are calibrated to match selected moments

in the data. We then intend to endogenously calibrate the following parameters b, ζ, ϵ, λf , λh.

5.1 External Calibration

We set σ = 2 to generate an intertemporal elasticity of substitution of 0.5. To ensure the

existence of a BGP, we impose ξ = σ − 1 = 1, see 4.3.1 for the derivation of the BGP. We
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set the weight on second period utility relative to first period utility, β, to match an annualized

discount factor of 0.92. We choose a real interest rate in the small open economy of 1%. The

capital intensity in the final good sector is αf = 1/3, consistent with estimates for the U.S.

According to Frankovic, Kuhn, and Wrzaczek (2017), based on Acemoglu and Guerrieri (2008),

an appropriate estimate for the capital intensity in the health sector is αh = 1/5.

Table 2: External Calibration

Parameter Description Value Target

Small open economy
R-1 Rate of return 1.5 1 % annual return

Households
1/σ IES 0.5 Standard
β Discount factor 0.078 βannualized = 0.94
ξ Curvature survival function σ − 1 = 1 Ensures BGP existence

Firms
αf Capital intensity final 0.33 Standard
αh Capital intensity health 0.2 FKW (2017), AG (2008)

5.2 Internal Calibration

We aim at expressing in any period t, xt in terms of the state variables of the problem in order

to derive expressions for the conditions for an inoperative health sector. The state variables in

any period t are qft−1, qht−1, Tt.

Initial Conditions. We choose the initial conditions and a subset of parameters such that the

dynamic equilibrium has the desired properties in the initial phases (phases 1 and 2). We now

derive the initial conditions and state the desired properties as well as the calibration strategy to

satisfy those properties.

Conditional on the modern health sector being inactive in period 1 (which we verify below),

we have lf1 = 1 which allows us to solve for the production side in period 1 analytically. Given R

and some qf0, which remains to be determined, we can use (29) and (32) to compute the quality
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in period 1 as:

qf1 = (1 + (λf − 1)µf0) qf0 = Υt(R)qf0−1 (47)

=

1 + (λf − 1)φ
1

1−γf

f

[
1− αj
αj

γf

(
α2
f

Rαf

) 1
1−α

] γf
1−γf

 qf0 = Υt(R)qf0. (48)

Further note that for lf1 = 1 we obtain from (15) that the capital stock employed in production

is

kf1 =

(
α2
f

R

) 1
1−αf

qf1. (49)

1. Initial assets: We assume that the small open economy has a zero net foreign asset

position in period 1 so that kf1 = s0.

Now use (47) in (49) and set kf1 = s0 to get

s0(qf0, R) =

(
α2
f

R

) 1
1−αf

Υ1(R)qf0

=

(
α2
f

R

) 1
1−αf

1 + (λf − 1)φ
1

1−γf

f

[
1− αj
αj

γf

(
α2
f

Rαf

) 1
1−α

] γf
1−γf

 qf0

(50)

2. Initial income and first kickoff: We calibrate the initial quality in the final good sector

qf,0 and the value of life b jointly targeting two moments. First, an initial income level of

the economy such that households in period 1 are indifferent between suicide and survival.

Second, the timing of the first kickoff in 1860, meaning the period in which households

start consuming basic health goods, which corresponds to period 2 in the model. Note,

this implies that there are no investments in basic and modern health goods, i0 = if0 = ih0

in the initial period. As a consequence, no0 = ψ(0).

Given the value of life b, we can solve analytically for the initial quality in the final good

sector that ensures that households in period t = 1 are indifferent between survival and

suicide. Observe that for lft = 1 wages in the final goods sector and transfers are given by

wft = (1− αf )k
αf

ft q
1−αf

ft (51)

Tt = Rst−1(1− not ), (52)
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Now, use (40) for lft = 1 to obtain

wft = R
1− αf
α2
f

kft

and thus cash-on-hand xt = wft + Tt is given by

xt = R
1− αf
α2
f

kft +Rst−1(1− not )

and thus we can express the period 1 cash-on-hand in terms of initial savings using

that kf1 = s0 as

x1 = R

(
1− αf
α2
f

+ (1− no1)

)
s0(qf0, R)

where s0(qf0, R) is given by (50). Finally, recall that for the lower bound (to insure that

households do not commit suicide) we need

x1 ≥
[b(σ − 1)]

1
1−σ

R

⇔ R

(
1− αf
α2
f

+ (1− no1)

)
s0(qf0, R) ≥

[b(σ − 1)]
1

1−σ

R

which simplifies to x1 ≥ 1
bR

for σ = 2. Using (50) then gives

R

(
1− αf
α2
f

+ (1− no1)

)

·
(
α2
f

R

) 1
1−αf

1 + (λf − 1)φ
1

1−γf

f

[
1− αj
αj

γf

(
α2
f

Rαf

) 1
1−α

] γf
1−γf

 qf0 ≥
[b(σ − 1)]

1
1−σ

R
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and thus we parametrise (breaking indifference as survival) the initial quality in the final

goods sector as

qf0 =
[b(σ − 1)]

1
1−σ

R
·R(1− αf

α2
f

+ (1− no1)

)(
α2
f

R

) 1
1−αf

1 + (λf − 1)φ
1

1−γf

f

[
1− αj
αj

γf

(
α2
f

Rαf

) 1
1−α

] γf
1−γf




−1

(53)

3. Kickoff of modern health sector: We calibrate the initial quality in the health sector

qh,0 to match the kickoff timing of the modern health sector in 1940. We assume that

during phases 1 and 2 while the modern health sector is inactive, health quality qht grows

exogenously at the same rate as quality in the final goods sector, qft.

4. Survival function and initial life expectancy: We calibrate ν in the survival function

to match initial life expectancy during phase 1. Observe that νζ pins down the initial life

expectancy (before the kick-off). Recall that

it = iht + (ν + ift)
ζ

and

ψ(it) = 1− (1 + it)
−ξ

so that with zero health investments in both goods and with the calibration of ξ = 1 we

get

ψ(it = νζ) = 1−
(
1 + νζ

)−1
(54)

Remaining life-expectancy at economic birth is given by

y = (1 + ψ) · 40. (55)

Using (54) in (55) we get as value for ν under the maintained parametric restriction ξ = 1

and for given ζ that

ν =

[(
40

80− y
− 1

)] 1
ζ

. (56)
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To calibrate y in the above we take our estimate of cohort life expectancy in year 1790 (the

beginning of our sample), of y = 40.43 years.

Calibration of Remaining Parameters. We calibrate the curvature of basic health spending

in the health investment function, ζ, to minimize the distance between life expectancy in the

model and in the data from 1860 onwards. We further calibrate the step size for innovations

in the final good sector, λf , targeting average GDP per capita growth between 1820 and 2020,

and the step size for modern health, λh, targeting the average growth rate of the output share

of the modern health sector between 1940 and 2020. Lastly, we fix the scaling and curvature

parameters of the innovation probability, γ and ϕ, to 0.5 in the first stage and calibrate the

remaining parameters conditional on that.

Table 3: Internal Calibration

Parameter Description Value Target

Households
b Value of life 129 LE20 in 1860
ζ Investment curvature 0.6 LE20 after 1860
ϵ Labor mobility 2 Growth: Q-adj price

Firms and R&D
λf , λh Growth factor 120, 100 GDP per capita
γf , γh Innovation probability: curvature 0.5, 0.5 First stage
ϕf , ϕh Innovation probability: scaling 0.5, 0.5 First stage

Initial Conditions
qf,0 Initial quality: final 0.71 Initial income
qh,0 Initial quality: health 0.01 Kickoff 1940

6 Results

In this section we contrast the positive predictions of the model concerning the time paths of

income, the share of economic activity devoted to the health sector and the relative price of

health with the empirical facts documented in Section 2 of the paper. We will also use the model

as a measurement tool to quantify a) the contribution of the modern health sector to the overall

increase in life expectancy and b) how much in the increase in the observed relative price of health

services in the data should be attributed, from the perspective of the model, to changes in the

relative quality qht/qft.
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In Figure 5 we display the time series of income per capita (real GDP per capita) in the model

and in the data, both plotted in (natural) log-scale. Per capita income growth in the model is

endogenous and driven by innovation and the associated growth in the quality (qft, q)ht, initially

only in the final goods sector (since the health sector is inoperative), and after 1940 also driven

by innovation and thus quality/productivity growth in the modern health sector. We observe that

the model matches the roughly linear income growth in the data well.

Figure 5: GDP per Capita [Logarithmic Scale]
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Notes: Natural logarithm of real GDP per capita in model and data. Source: Data sources as in Figure 2, own
calculations.

Figure 6 displays the time series of cohort life expectancy at age 20 from the data (as estimated

for the U.S. in Section 2) and from the model. The left panel shows the entire time series starting

from 1820, and the right panel zooms into the period after the modern health sector emerged

(from 1940 on) and additionally displays the component of life expectancy that is driven by

investments into only basic health goods (green dots). The gap between the blue and the green

line can be interpreted as the contribution of the modern health, by comparing the evolution of

life expectancy when household optimally allocate health investments between the basic and the

modern health goods (blue line) and a counterfactual economy where the modern health sector

is simply absent.

We observe that the model, on the account of endogenous income growth and unbalanced

endogenous growth between the final goods sector and the emergence of the modern health sector

in the 1940’s, implies that life expectancy grows continually throughout the last 2 centuries and

matches the data on cohort life expectancy well.

33



Figure 6: Health Shares (Spending, Employment, R&D) in the U.S.
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(b) Decomposition of Life Expectancy

Notes: Remaining cohort life expectancy at age 20 in model (blue x mark) and data (red circles). The figure also
shows a decomposition setting spending on modern health goods to zero (black dots). Sources: Data sources as
in Figure 1, own calculations.

Turning to the decomposition of life expectancy improvements driven by the increase in

traditional health goods and the modern high-tech health sector, we observe that according to

the model, modern health goods become an important driver of life expectancy after 1980 and

account for 30% of the increase in life expectancy at age 20 since 1940, translating into 3.3

additional expected years of life. The complementary implication is noteworthy, too: even in the

absence of the emergence of modern medicine, income-induced growth in basic health goods (a

richer, more balanced diet, better hygiene) would still have led to an increase in life expectancy

between 1940 and 2020 by close to 8 years, and basic health goods are the main driver of increased

longevity, according to the model, until 1980.

The health-related output-, labor- and R&D shares underlying the emergence of the modern

health sector are displayed in Figure 7. Note that we plot these shares only from 1940 onward

as they are not available empirically, and are equal to zero in the model. The figure shows

that qualitatively, the model reproduces the increasing shares of labor, R&D and consequently

output accruing to the modern health sector. Quantitatively, in the model the takeoff is initially

somewhat too slow between 1940 and 1980 then accelerates too much between 1980 and 2020,

relative to what the data suggests. Note that these shares were not targeted in the calibration,

and therefore some divergence between model and data is to be expected and the ability of the

model to qualitatively match the relevant time series from the data should be a considered a

qualified success.
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Figure 7: Health Shares (Spending, Employment, R&D) in the U.S.
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Sources: Data sources as in Figure 3, own calculations.

Finally, Figure 8 plots the relative price of health goods from Section 2 of the data, combined

with the relative price times the growth component, pt
qht
qft

, which is the model analogue price

that would be observed in the data if there were no quality adjustments at all in the empirically

measured relative price of health. We refer to pt
qht
qft

as the non-quality-adjusted price. According

to the model, the price of one raw unit of health goods is increasing slowly over time, accounting

for the improvement in the quality of health care the non-quality-adjusted price of health goods

increases at a rate similar to the data.14 To decompose the observed relative price increase in

the measured health price in the data into a component driven by rising output prices versus

falling input prices, we decompose the increase in the non-quality-adjusted health price pt
qht
qft

into its two components: 1) growth in the price of health goods pt, whose main driver is the

14Thus, this figure implicitly assumes that the empirically observed relative price for health goods has not been
appropriately quality adjusted.
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(income-growth-induced) rising household demand for health goods relative to final goods; and

2) productivity growth in the modern health sector relative to the final goods sector, driven by

endogenous technological progress.

Between 1940 and 1980, both components contribute roughly half of the overall increase in

the non-quality-adjusted health price pt
qht
qft

; precisely speaking, the rising demand for health goods

accounts for 52%. After 1980, technological progress in the modern health sector accelerates and

becomes the dominant force, and as a result, 67% of the overall growth in the non-quality-adjusted

health price between 1940 and 2020 is accounted for by greater quality growth in intermediates

in the modern health sector (and thus faster productivity growth in that sector) relative to the

final goods sector. The relative contribution of rising demand accounts for the remaining 33%.

Figure 8: Health Price Index
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(b) Non-Quality-Adjusted Price

Sources: Data sources as in Figure 4, own calculations.

7 Conclusion

In this paper we build a quantitative theory of income growth, the increase in life expectancy in

the last two centuries, and the emergence and expansion of a modern health sector in the 20th

century. Our two-sector overlapping generations model with endogenous and directed technical

change endogenously determines income growth, life expectancy, and technological progress in

the health sector and the final goods sector, as well as the size of the health sector and the quality

and price of the goods in general equilibrium. We show that it can generate an economic path in

which households are initially poor and the quality-adjusted price of health goods is prohibitively

high so that demand for health goods is zero, life is short and life expectancy stagnant. As

income grows, fuelled by technological progress, households start consuming basic health goods,
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life expectancy starts to rise, and directed technological progress eventually, with a delay of ca.

100 years, leads to the emergence and expansion of a modern health sector.

Since technological progress in the health sector is endogenous, government health policies

(such as the funding of basic research in the health sector or the public provision of health

goods though government-run health insurance or the direct production of these goods in public

hospitals) will impact the timing and speed of the development of a modern health sector. The

next steps of our analysis will be to evaluate positively, and to study normatively the importance

of government interventions in the health sector in the 20-th century in the U.S.
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A Data Appendix

Our data to construct cohort life-expectancy comes from three different sources. First, we use

historical mortality rates for the US that were originally collected and imputed by Haines (1994),

which were updated by Hacker (2010). This data covers the time period 1790 to 1899 and

comes at a decennial frequency for the age groups {0, 1 − 4, 5 − 9, . . . , 80}, where the authors

report mortality rates of 1 for age 80 onward. We carry out two transformations to this data:

(i) we hold mortality rates constant within age group and compute age specific mortality rates

in each age group i, mi
j such that mi is the respective geometric average within this age group,

i.e., mi
j = 1 − (1 − mi)1/5; (ii) to obtain estimates of mortality rats above (and including)

age 80, we estimate per period a Gompertz–Makeham mortality model on the (constructed) age

specific mortality rates and set the mortality rates for all ages 80 and older to the predicted values.

Second, for the years 1900 to 1932 we use data from the Human Life-Table Database, which have

age specific mortality data for ages 0, 1, . . . , 105. We append those to the historical mortality

rates and smooth the resulting mortality rates over years 1790 to 1932 and ages 5 and older with

a kernel density smoother and a bandwidth parameter of 5. Third, for the years 1933 to 2021 we

use data from the Human Mortality Database with age and time specific mortality rates up to

age 110. To predict future mortality rates (needed for the computation of cohort life expectancy)

we estimate future trends in mortality by a Lee-Carter method—assuming a deterministic trend of

the single index—which we apply to the postwar data (years 1950-2021). Finally, over the entire

period (including the predicted mortality rates), we filter the data by applying a Hodrick-Prescott

filter with a bandwidth parameter of 100.

The bootstrapped confidence intervals shown in Panels (c) to (e) in Figure 1 are computed by

bootstrapping along the time dimension of the cross-sectional mortality rates, whereby we ignore

the uncertainty of the predicted mortality estimates from the Lee-Carter method. We implement

the bootstrap procedure as a block bootstrap and set the width of the blocks according to the

standard rule of thumb bw = T 1/3. We bootstrap on the entire data sequence, starting in

year 1790 and ending in 215215, thus T = 363 and bw = 7.13, of which we take the ceil.

15Data from the Human Mortality Database range to year 2021 and to age 110. We add 20 additional years.
The horizon is thus 2021 + (110 + 1) + 20 = 2152.

40



B Model Appendix

B.1 Analytical Solution to the Household Problem

Households derive utility from consumption in young age cyt ,, and old age cot+1,, they survive from

the first to the second period of their life with probability ψ which depends on their investment

it into health goods when young. Expected lifetime utility is given by

(1− β)u(cyt ) + βψ (it)u(c
o
t+1)

which nests the benchmark specification without consumption in young age for β = 1. The

maximization of the utility function is subject to the constraints:

cyt + ift + ptiht + st = xt ≡ wftlft + whtlht + Tt (57a)

it = f(ift, iht) (57b)

1 = g(lft, lht) (57c)

cot+1 = Rst. (57d)

Since optimal saving is always strictly positive, potential borrowing constraints never bind and

the period budget constraints can be consolidated to the lifetime budget constraint

cyt + ift + ptiht +
cot+1

R
= wftlft + whtlht + Tt ≡ xt. (58)

B.1.1 Division of Health Investment

We first derive the optimal split between final goods and health goods for a given amount of

health expenditures et.

Corner Solution with iht = 0, ift = et: In the corner solution the first-order conditions do not

hold with equality. From the budget constraint we get iht = 0, ift = et. Then health investment

it is given by

it = f(iht, ift) = iht + (ν + ift)
ζ = (ν + et)

ζ

Note, for et = 0 the corner solution corresponds to stage 1 (no health expenditures), for et > 0

it corresponds to stage 2 (positive health expenditures that are fully invested into final goods).
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Interior Solution: In the interior solution the first-order conditions hold with equality, they are

given by

ζ (ν + ift)
ζ−1 = λ

1 = λpt

Combining yields

ζ (ν + ift)
ζ−1 =

1

pt

ν + ift = (ζpt)
1

1−ζ

ift = (ζpt)
1

1−ζ − ν

Define λ̃t ≡ (ζpt)
1

1−ζ . Then

ift = λ̃t − ν

The quasi-linear specification means that in the interior solution there are no wealth effects for

the final health good ift. Thus, ift = λ̃t−ν is constant and independent of et. Using the budget

constraint, we get

iht =
et − (λ̃t − ν)

pt

For ζ → 0 we get λ̃t → 0 and, thus, taking into account the non-negativity constraints (ift, iht) ≥
0

ift → 0

iht → et
pt

it → et
pt

+ νζ

Thus, ζ needs to be sufficiently large for stage 2 to exist, otherwise the marginal benefit from

final goods investment is too small.

Existence of Stage 2: We want to ensure that initial health investment will be allocated

towards ift, that is, that the corner solution with iht = 0 and ift = et characterized above exists.

We get the undesired corner solution with iht > 0 and ift = 0 (stage 2 is skipped with initial

health investment directly being allocated towards iht) if the marginal cost of investing into ift
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exceeds the marginal benefit, evaluated at ift = 0:

ζ (ν + ift)
ζ−1 ≤ 1

pt

ζνζ−1 ≤ 1
pt

(ζpt)
1

1−ζ ≤ ν

λ̃t ≤ ν

Then stage 2 exists as long as the optimal interior solution computed above yields ift = λ̃t−ν > 0

which requires the non-homotheticity factor ν to be sufficiently small relative to health sector

price pt and ζ.

Characterizing the Stages: For a given level of health expenditures et we can fully characterize

the stages now. Assuming λ̃t > ν for existence of stage 2, the stages are then characterized by

Stage =


1, if et = 0

2, if et ∈ (0, λ̃t − ν]

3, if et > λ̃t − ν

B.1.2 Level of Health Expenditures

Given the optimal division of health investment we now optimize over the allocation of cash xt

into consumption in young age, savings st, and health expenditures et. The household solves

max
0≤cyt ,et≤xt

(1− β)u(ct,y) + βψ (it(pt, et))u(R [xt − et − ct,y]

We can rewrite the household problem in terms of expenditure shares. Define the share of

consumption when young and the share of health expenditures in old age spending, respectively,

as

ϑt,c =
cyt
xt

∈ [0, 1],

ϑt,e =
et

et + st
=

et
(1− ϑt,c)xt

=
ptiht + ift
(1− ϑt,c)xt

∈ [0, 1],

Then the maximization problem can be rewritten in terms of those two spending shares

max
0≤ϑt,c,ϑt,e≤xt

(1− β)u(ϑt,cxt) + βψ (it(pt, (1− ϑt,c)ϑt,ext))u(Rxt (1− ϑt,c) (1− ϑt,e))
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The first-order conditions are given by

[ϑt,c] 0 = (1− β)u′yxt − βψu′oRxt(1− ϑt,e) + βψ′ ∂it
∂ϑt,c

uo

[ϑt,e] 0 = ψ′ ∂it
∂ϑt,e

uo − ψu′oRxt(1− ϑt,c)

Note, ∂it
∂ϑt,e

depends on the optimal division of health investment and, thus, the level of ϑt,e.

Rearranging yields

(1− β)u′y = βψu′oR(1− ϑt,e)− βψ′ ∂it
∂ϑt,c

uo
x

ψ

ψ′xtR(1− ϑt,c) =
uo
u′o

∂it
∂ϑt,e

The second optimality condition describes the tradeoff between health investment and consump-

tion in old age.

B.1.3 Corner Solution of Optimal Health Investment

In stage 1 all resources are spent on consumption without any health investment, ϑt,e = 0.

Moreover, ∂it
∂ϑt,e

depends on the optimal division of health investment, that is, it depends on how

the first marginal unit of health investment et is allocated between iht and ift. We assume λ̃t ≥ ν

which we later verify in equilibirum. As shown above, this ensures that phase 2 exists and initial

health investment is allocated towards the final good sector ift. Then health investment and its

derivatives are given by

i0 = νζ

∂it
∂ϑt,e

|ϑt,e=0 =
∂

∂ϑt,e
(ν + (1− ϑt,c)ϑt,ex)

ζ |ϑt,e= 0 = ζ(1− ϑt,c)xtν
ζ−1

∂it
∂ϑt,c

= −ζνζ−1ϑt,ex|ϑt,e=0 = 0

Consumption in young and old age are given by

cyt = ϑt,cxt

cot+1 = R(1− ϑt,c)xt
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The intertemporal Euler equation can be solved analytically for the optimal share of consumption

in young age during phase 1. It is given by

(1− β)u′y = βψ0u
′
oR(1− ϑt,e)− βψ′

0

∂it
∂ϑt,c

uo
x

(1− β)u′y = βψ0u
′
oR

(ϑt,cx)
−σ =

β

1− β
ψ0 (R(1− ϑt,c)x)

−σ R(
1− ϑt,c
ϑt,c

)σ
=

β

1− β
ψ0R

1−σ

ϑt,c =

[
1 +

(
β

1− β
ψ0R

1−σ
) 1

σ

]−1

≡ ϑphase 1,c

where ψ0 = 1 −
(
1 + νζ

)−ξ
is the base survival probability during phase 1. We can further

use the 2. FOC characterizing the tradeoff between health investment and consumption in old

age to find the threshold cash level at which phase 2 begins. During stage 1 without any health

expenditure, the 2. FOC does not hold with equality, evaluated at it(pt, et = 0), such that

ψ

ψ′xtR(1− ϑt,c) ≥
uo
u′o

∂it
∂ϑt,e

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
Rxt(1− ϑt,c) ≥

(
1

1− σ
+ b(cot+1)

σ−1

)
cot+1

∂it
∂ϑt,e

Plugging it(pt, et = 0) and ∂it
∂ϑt,e

in yields

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
Rxt(1− ϑt,c) ≥

(
1

1− σ
+ b(cot+1)

σ−1

)
cot+1ζ(1− ϑt,c)xtν

ζ−1

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
R ≥

(
1

1− σ
+ b(cot+1)

σ−1

)
cot+1ζν

ζ−1

Rewriting consumption in old age in terms of overall cash in the first stage (ϑt,e = 0) yields

cot+1 = Rst = R(1− ϑt,e)(1− ϑphase 1,c)xt = R(1− ϑphase 1,c)xt = Rx̃t

where

x̃t = (1− ϑphase 1,c)xt =

1−

[
1 +

(
β

1− β
ψ0R

1−σ
) 1

σ

]−1
xt
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is total cash spent on health investment and old age consumption during phase 1. Plugging back

in then gives

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
R ≥

(
1

1− σ
+ b (Rx̃t)

σ−1

)
Rx̃tζν

ζ−1 (59)

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
≥
(

1

1− σ
+ b (Rx̃t)

σ−1

)
x̃tζν

ζ−1 (60)

This equation characterizes the region of cash x̃t for which health expenditures are zero, et = 0,

and the economy is in phase 1. For convenience define

A1 ≡
1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

ζνζ−1

= 0, if ν = 0

> 0, if ν > 0

Thus, A1 ≥ 0 and in our case we have A1 > 0 because ν > 0 is necessary for the existence of

stage 2. Plugging A1 back into the condition for the corner solution yields

A1 ≥
(

1

1− σ
+ b (Rx̃t)

σ−1

)
x̃t

To make progress analytically we need to make assumptions on the parameters. Assume σ = 2,

then

A1 ≥ −x̃t + bRx̃2t

0 ≥ x̃2t −
1

bR
x̃t −

A1

bR

The two solutions to this quadratic equation are given by

x̃1/2 =
1

2bR

(
1±

√
1 + 4bRA1

)
A1 ≥ 0 means that

√
1 + 4bRA1 ≥ 1. Thus, x̃2 ≤ 0, then x̃1 is the only economically relevant

solution. The first kick-off separating stage 1 and stage 2 is then given by

x̃kickoff1 =
1

2bR

(
1 +

√
1 + 4bRA1

)
=

1

bR

(
1

2

(
1 +

√
1 + 4bRA1

))
≡ 1

bR
∆(b, R,A1) (61)
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Notice that ν > 0 ensures A1 > 0 which in turn ensures ∆(b, R,A1) > 1. Further, x̃lowerbound =
1
b

is the lower bound on cash such that there is no suicide. Then the interval

x̃ ∈ [x̃lowerbound, x̃kickoff1] (62)

is non-empty for ν > 0 and characterizes the cash region for stage 1 without suicide. Finally, we

can map this characterization of phase 1 in terms of cash spent in old age x̃ back into overall

cash x.

x ∈ [xlowerbound, xkickoff1] =

[
x̃lowerbound

(1− ϑphase 1,c)
,

x̃kickoff1
(1− ϑphase 1,c)

]
(63)

B.1.4 Interior Solution of Optimal Health Investment

In the interior solution we cannot solve for the shares analytically. Instead we have a system of

two equations given by

(1− β)u′y = βψu′oR(1− ϑt,e)− βψ′ ∂it
∂ϑt,c

uo
x

ψ

ψ′xtR(1− ϑt,c) =
uo
u′o

∂it
∂ϑt,e

Where health investment it and its derivatives ( ∂it
∂ϑt,c

, ∂it
∂ϑt,e

) both depend on whether we are in

stage 2 or 3 (both stages are interior solutions with respect to the optimal ϑt,e). We know that we

move from stage 2 to stage 3 when et is sufficiently large, formally when et = (1−ϑt,c)ϑt,e(xt)xt >
λ̃t−ν. For a given xt we can solve the FOCs and find ϑ⃗(xt) = (ϑt,c(xt), ϑt,e(xt)) with the following

steps

1. Guess
ˆ⃗
ϑ

2. Determine the current stage through ê = (1− ϑ̂t,c)ϑ̂t,ex. Specifically,

Stage =

2, if ê ∈ (0, λ̃t − ν]

3, if ê > λ̃t − ν

3. Compute ĉyt , ĉ
o
t+1, î,

∂î

∂ϑ̂t,e
and ∂î

∂ϑ̂t,c
based on the stage and check if the FOCs hold

îf =

ê = (1− ϑ̂t,c)ϑ̂t,ex, if Stage = 2

λ̃− ν, if Stage = 3
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îh =

0, if Stage = 2

ê−îf
ph

=
(1−ϑ̂t,c)ϑ̂t,ex−îf

ph
, if Stage = 3

∂î

∂ϑ̂t,e
=

ζ(ν + îf )
ζ−1(1− ϑ̂t,c)x, if Stage = 2

ηh
(1−ϑ̂t,c)x

ph
, if Stage = 3

∂î

∂ϑ̂t,c
=

−ζ(ν + îf )
ζ−1ϑ̂t,ex, if Stage = 2

−ηh ϑ̂t,exph
, if Stage = 3

4. Repeat until
ˆ⃗
ϑ is found that solves the FOCs

B.1.5 Interior Solution on the BGP

We solve for the BGP using xt → ∞ and ψ(it) = 1. In the interior solution of the BGP we have

∂it
∂ϑt,e

=
∂

∂ϑt,e

1

pt

(
ϑt,e(1− ϑt,c)xt + νt +

1− ζ

ζ
λ̃t

)
=

(1− ϑt,c)xt
pt

Then the 2. FOC becomes

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
xtR(1− ϑt,c) =

(
1

1− σ
+ bcσ−1

t+1

)
ct+1

(1− ϑt,c)xt
pt

pt = p is constant, xt converges to infinity and it → ηhiht → et
pt

= (1−ϑt,c)ϑex
pt

. Thus it and

ct+1 are both constant shares of cash xt on the BGP. For a BGP to exist we therefore require

ξ = σ − 1. Plugging in

i =
(1− ϑc)ϑex

p

c = R(1− ϑe)(1− ϑc)x

Solving for the limit case where x→ ∞ we can find the health expenditure share on the BGP

ϑ∗
e =

1 +

[
(pR)1−σ

bξ

] 1
σ

−1
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Plugging ϑ∗
e into the Euler equation yields the BGP share of young consumption in cash

ϑ∗
c =

[
1 +

(
β

1− β
ψ [R(1− ϑ∗

e)]
1−σ
) 1

σ

]−1

B.2 Model without Young Consumption: Characterization of Health Investment

If we abstract from consumption at young age, β = 1, we can characterize the full household

solution analytically along the transition, including the cash levels at which both kickoffs happen.

We again first solve for the optimal split between final goods and health goods for a given amount

of health expenditures et. Then we solve for the optimal amount of health expenditures et. Thus,

we start by solving

it = it(pt, et) = max
ift,iht

f(ift, iht)

s.t. ptiht + ift = et

ift, iht ≥ 0

f(ift, iht) = iht + (ν + ift)
ζ

Corner Solution with iht = 0, ift = et: In the corner solution the first-order conditions do not

hold with equality. From the budget constraint we get iht = 0, ift = et. Then health investment

it is given by

it = f(iht, ift) = iht + (ν + ift)
ζ = (ν + et)

ζ

Note, for et = 0 the corner solution corresponds to stage 1 (no health expenditures), for et > 0

it corresponds to stage 2 (positive health expenditures but fully invested into final goods).

Interior Solution: In the interior solution the first-order conditions hold with equality, they are

given by

ζ (ν + ift)
ζ−1 = λ

1 = λpt
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Combining yields

ζ (ν + ift)
ζ−1 =

1

pt

ν + ift = (ζpt)
1

1−ζ

ift = (ζpt)
1

1−ζ − ν

Define λ̃t ≡ (ζpt)
1

1−ζ . Then

ift = λ̃t − ν

The quasi-linear specification means that in the interior solution there are no wealth effects for

the concave good ift. Thus, ift = λ̃t − ν is constant and independent of et. Using the budget

constraint, we get

iht =
et − (λ̃t − ν)

pt

For ζ → 0 we get λ̃t → 0 and, thus, taking into account the non-negativity constraints (ift, iht) ≥
0

ift → 0

iht → et
pt

it → et
pt

+ νζ

Thus, ζ needs to be sufficiently large for stage 2 to exist, otherwise the marginal benefit from

final goods investment is too small.

Existence of Stage 2: We want to ensure that initial health investment will be allocated

towards ift, that is, that the corner solution with iht = 0 and ift = et characterized above exists.

We get the undesired the corner solution with iht > 0 and ift = 0 (stage 2 is skipped with initial

health investment directly being allocated towards iht) if the marginal cost of investing into ift

exceeds marginal benefit, evaluated at ift = 0:

ζ (ν + ift)
ζ−1 ≤ 1

pt

ζ (ν)ζ−1 ≤ 1
pt

(ζpt)
1

1−ζ ≤ ν

λ̃t ≤ ν
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Then stage 2 exists as long as the optimal interior solution computed above yields ift = λ̃t−ν > 0

which requires the non-homotheticity factor ν to be sufficiently small relative to health sector

price pt and ζ.

Characterizing the Stages: For a given level of health expenditures et we can fully characterize

the stages now. Assuming λ̃t > ν for existence of stage 2, the stages are then characterized by

Stage =


1, if et = 0

2, if et ∈ (0, λ̃t − ν]

3, if et > λ̃t − ν

B.2.1 Level of Health Expenditures

Given the optimal division of health investment we now optimize over the allocation of cash xt

into savings st and health expenditures et. That is, the household now solves

max
0≤et≤xt

ψ (it(pt, et))u(rt+1 [xt − et]).

Define the share of health expenditures in total spending as

ϑt =
et
xt

=
ptiht + ift

xt
∈ [0, 1],

Then we can rewrite the above problem in terms of ϑt

max
ϑt∈[0,1]

ψ (it(pt, ϑtxt))u (Rt+1xt (1− ϑt)) .

The first-order condition is given by

0 = ψ′ ∂it
∂ϑt

u− ψu′Rt+1xt

Note, the first-order condition depends on ∂it
∂ϑt

which in turn depends on the optimal division of

health investment and, thus, the level of ϑt. Rearranging yields

ψ

ψ′xtRt+1 =
u

u′
∂it
∂ϑt

(64)
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B.2.2 Corner Solution of Optimal Health Investment

We get the corner solution with ϑ = 0, corresponding to stage 1 without any health expenditure,

when the FOC does not hold with equality evaluated at it(pt, et = 0) such that

ψ

ψ′xtRt+1 ≥
u

u′
∂it
∂ϑt

or
1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
xtRt+1 ≥

(
1

1− σ
+ bcσ−1

t+1

)
ct+1

∂it
∂ϑt

Thus, we get the corner solution when the marginal benefit from saving one more unit is larger

than the marginal benefit from the first unit of health investment. To further characterize this

condition we can plug in it(pt, et = 0) = µtν
ζ . However, ∂it

∂ϑt
depends on the optimal division

of health investment, that is, it depends on how the first marginal unit of health investment et

is allocated between iht and ift. We assume λ̃t ≥ ν which, as shown above, ensures that initial

health investment is allocated towards the final good sector ift. Then the derivative evaluated

at ϑt = 0 is given by

∂it
∂ϑt

=
∂

∂ϑt
(ν + et)

ζ =
∂

∂ϑt
(ν + ϑtxt)

ζ = ζxtν
ζ−1

Plugging it(pt, et = 0) and ∂it
∂ϑt

back into the corner solution condition yields

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
Rt+1 ≥

(
1

1− σ
+ bcσ−1

t+1

)
ct+1ζν

ζ−1

Rewriting consumption in terms of overall cash in the first stage (ϑt = 0) yields

ct+1 = Rt+1st = Rt+1(1− ϑt)xt = Rt+1xt

Plugging back in then gives

1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)
≥
(

1

1− σ
+ b (Rt+1xt)

σ−1

)
xtζν

ζ−1 (65)

Thus, this equation characterizes the first stage: The region of cash xt for which health expen-

ditures are zero, et = 0. For convenience define

A1 ≡
1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

ζνζ−1

= 0, if ν = 0

> 0, if ν > 0
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Thus, A1 ≥ 0 and in our case we have A1 > 0 because ν > 0 is necessary for the existence of

stage 2. Plugging A1 back into the condition for the corner solution yields

A1 ≥
(

1

1− σ
+ b (Rt+1xt)

σ−1

)
xt

To make progress analytically we need to make assumptions on the parameters. Assume σ = 2,

then

A1 ≥ −xt + bRt+1x
2
t

0 ≥ x2t −
1

bRt+1

xt −
A1

bRt+1

The two solutions to this quadratic equation are given by

x1/2 =
1

2bRt+1

(
1±

√
1 + 4bRt+1A1

)
A1 ≥ 0 means that

√
1 + 4bRt+1A1 ≥ 1. Thus, x2 ≤ 0, then x1 is the only economically

relevant solution. The first kick-off separating stage 1 and stage 2 is then given by

xkickoff1 =
1

2bRt+1

(
1 +

√
1 + 4bRt+1A1

)
=

1

bRt+1

(
1

2

(
1 +

√
1 + 4bRt+1A1

))
≡ 1

bRt+1

∆(b, Rt+1, A1) (66)

Notice that ν > 0 ensures A1 > 0 which in turn ensures ∆(b, Rt+1, A1) > 1. Further,

xlowerbound = 1
bRt+1

is the lower bound on cash such that there is no suicide. Then the inter-

val

x ∈ [xlowerbound, xkickoff1] (67)

is non-empty for ν > 0 and characterizes the cash region for stage 1 without suicide.

B.2.3 Interior Solution of Optimal Health Investment

In the interior solution with positive health expenditures, ϑt > 0, the FOC holds with equality

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
xtRt+1 =

(
1

1− σ
+ bcσ−1

t+1

)
ct+1

∂it
∂ϑt
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Plugging in ct+1 = Rt+1st = Rt+1(1− ϑt)xt yields

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
=

(
1

1− σ
+ b (Rt+1(1− ϑt)xt)

σ−1

)
(1− ϑt)

∂it
∂ϑt

As before, in order to solve this equation for the share of health expenditure as a function of cash

ϑ(xt) we need to plug in it and
∂it
∂ϑt

which now both depend on whether we are in stage 2 or 3

(both stages are interior solutions with respect to the optimal ϑt). We know that we move from

stage 2 to stage 3 when et is sufficiently large, formally when et = ϑt(xt)xt > λ̃t−ν. For a given

xt = x̂ we can solve the FOC and find ϑ(x̂) with the following steps

1. Guess ϑ̂(x̂)

2. Determine the current stage through ê = ϑ̂(x̂)x̂. Specifically,

Stage =

2, if ê ∈ (0, λ̃t − ν]

3, if ê > λ̃t − ν

3. Compute î and ∂î

∂ϑ̂
based on the stage and check if the FOC holds

4. Repeat until ϑ̂(x̂) that solves the FOC is found

In order to further characterize the level of cash xkickoff2 at which the second kick-off happens,

we can utilitze that at the second kick-off total health expenditures et exactly equal the interior

level of final good investment

λ̃t − ν = ϑt(xkickoff2)xkickoff2

Moreover, at the second kick-off health investment and its derivative w.r.t. the expenditure share

are given by

it = λζt

∂it
∂ϑt

=
λt − ν

ptϑt

Plugging those two into the FOC yields

1

ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
=

(
1

1− σ
+ b (Rt+1(1− ϑt)xt)

σ−1

)
(1− ϑt)

λt − ν

ptϑt
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Now using the fact that at the second kick-off λ̃t − ν = ϑt(x)x we get

1

ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
=

(
1

1− σ
+ b (Rt+1x−Rt+1(λt − ν))σ−1

)
(1− ϑt)

λt − ν

ptϑt

As before assume σ = 2, then

1

ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
= (−1 + b (Rt+1x−Rt+1(λt − ν)))

(1− ϑt)

ϑt

λt − ν

pt

We can again use λ̃t − ν = ϑt(x)x to derive

(1− ϑt)

ϑt
=
x− (λt − ν)

(λt − ν)
=

x

(λt − ν)
− 1

and thereby eliminate the remaining ϑt to get

1

ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
= (−1 + b (Rt+1x−Rt+1(λt − ν)))

(
x

(λt − ν)
− 1

)
λt − ν

pt

Similar to before when finding the first kick-off, again define for convenience

A2 ≡
pt
ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)= 0, if ν = 0

> 0, if ν > 0

Then the FOC at the second kick-off reduces to

A2 = (x− (λt − ν)) (bRt+1x− bRt+1(λt − ν)− 1)

This is again a quadratic equation in x, simplifying further yiels

0 = x2 − x
2(λt − ν)bRt+1 + 1

bRt+1

+
(λt − ν)2bRt+1 + (λt − ν)− A2

bRt+1

The roots of this equation are given by

x1/2 =
2(λt − ν)bRt+1 + 1

2bRt+1

±

√(
2(λt − ν)bRt+1 + 1

2bRt+1

)2

− (λt − ν)2bRt+1 + (λt − ν)− A2

bRt+1
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which simplifies to

x1/2 =
1

2bRt+1

(
2(λt − ν)bRt+1 + 1±

√
1 + 4A2bRt+1

)
= (λt − ν) +

1

2bRt+1

(
1±

√
1 + 4A2bRt+1

)
This looks very similar to the solution for the first kick-off. The new term in the beginning

(λt− ν) is exactly the lower bound for the second kick-off because by definition it has to be that

xkickoff2 ≥ ift = (λt − ν). Since as before 4A2bRt+1 > 0 if ν > 0 the negative solution violates

that condition and can be ruled out. Then the second kick-off is given by

xkickoff2 = (λt − ν) +
1

2bRt+1

(
1 +

√
1 + 4bRt+1A2

)
= (λt − ν) +

1

bRt+1

(
1

2

(
1 +

√
1 + 4bRt+1A2

))
≡ (λt − ν) +

1

bRt+1

∆(b, Rt+1, A2) (68)

= ift +
1

bRt+1

∆(b, Rt+1, A2)

Notice that the wedge ∆(b, Rt+1, A) appears exactly the same way in both kick-offs. The only

difference is the value of A plugged into the wedge function. To compare the relative size of

those wedges first note that the wedge is increasing in A and further notice that

A2 =
pt
ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
>
pt
ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

>
1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

ζνζ−1

= A1

where the last inequality comes from the FOC of the optimal division of health investment

ζ (ν + ift)
ζ−1 = 1

pt
and, thus, pt > ζ (ν)ζ−1 for ift > 0. We can directly link the wedges to

savings at the kick-offs. Then the amount by which savings grow between the two kick-offs is

given by

∆s = skickoff2 − skickoff1 =
1

bRt+1

(∆(b, Rt+1, A2)−∆(b, Rt+1, A1))
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Thus, it makes sense that we get ∆(b, Rt+1, A2) > ∆(b, Rt+1, A1). Also note that if λt ≤ ν

(stage 2 does not exist), we get A2 = A1 and the two kick-offs derived above collapse to the

same cash value. (not yet sure expressing quantities in terms of these wedges is particularly useful

but it is a good sanity check).

B.2.4 Interior Solution on the BGP

In the interior solution of the BGP we have

∂it
∂ϑt

=
∂

∂ϑt

1

pt

(
ϑtxt + νt +

1− ζ

ζ
λ̃t

)
=
xt
pt

Then the FOC for ϑt becomes

1

ξ
(1 + it)

(
(1 + it)

ξ − 1
)
ptRt+1 =

(
1

1− σ
+ bcσ−1

t+1

)
ct+1

pt is constant, xt converges to infinity and it → iht → et
pt
. Thus it and ct+1 are both constant

shares of cash xt on the BGP. For a BGP to exist we therefore require ξ = σ − 1. Plugging in

i =
ϑx

p

c = R(1− ϑ)x

and solving for the limit case where x→ ∞ we can find the health expenditure share on the BGP

ϑ∗ =

(
1 +

[
(pR)1−σ

bξ

] 1
σ

)−1

B.2.5 Summarizing the Phases

To summarize, the three phases are characterized by three separate region of cash at hand. The

thresholds are given by

xLB =
1

bRt+1

=
1

bR2

xKO1 =
1

bRT1+1

∆(b, RT1+1, A1)

xKO2 = (λt − ν) +
1

bRT2+1

∆(b, RT2+1, A2)

where T1 and T2 are the points in time at which the two kick-offs occur. The second equality

in the first equation comes from the assumption that cash starts at its lower bound in period 1
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x1 =
1
bR2

. Recall that

A1 =
1

ξ

(
1 + νζ

) ((
1 + νζ

)ξ − 1
)

ζνζ−1

A2 =
pt
ξ

(
1 + λζt

)((
1 + λζt

)ξ
− 1

)
∆(b, Rt+1, A) =

1

2

(
1 +

√
1 + 4bRt+1A

)
Note that A1 only depends on time-invariant parameters. Then the three regions are given by

Phase =


1, if xt ∈ [xLB, xKO1)

2, if xt ∈ [xKO1, xKO2)

3, if xt ∈ [xKO2,∞)
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